Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
Q is empty.
The TRS is overlay and locally confluent. By [19] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
SORTITER(x, y) → EMPTY(x)
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF(false, x, y, z) → TAIL(x)
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF(false, x, y, z) → REPLACE(min(x), head(x), tail(x))
LE(s(n), s(m)) → LE(n, m)
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
EQ(s(n), s(m)) → EQ(n, m)
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
SORT(x) → SORTITER(x, nil)
SORTITER(x, y) → MIN(x)
IF(false, x, y, z) → HEAD(x)
MIN(cons(n, cons(m, x))) → LE(n, m)
REPLACE(n, m, cons(k, x)) → EQ(n, k)
IF(false, x, y, z) → MIN(x)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
SORTITER(x, y) → EMPTY(x)
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF(false, x, y, z) → TAIL(x)
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF(false, x, y, z) → REPLACE(min(x), head(x), tail(x))
LE(s(n), s(m)) → LE(n, m)
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
EQ(s(n), s(m)) → EQ(n, m)
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
SORT(x) → SORTITER(x, nil)
SORTITER(x, y) → MIN(x)
IF(false, x, y, z) → HEAD(x)
MIN(cons(n, cons(m, x))) → LE(n, m)
REPLACE(n, m, cons(k, x)) → EQ(n, k)
IF(false, x, y, z) → MIN(x)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 9 less nodes.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- LE(s(n), s(m)) → LE(n, m)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
The remaining pairs can at least be oriented weakly.
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(IF_MIN(x1, x2)) = x2
POL(MIN(x1)) = 1 + x1
POL(cons(x1, x2)) = 1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(s(x1)) = 0
POL(true) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- EQ(s(n), s(m)) → EQ(n, m)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3
- REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil))) at position [0] we obtained the following new rules:
SORTITER(nil, y1) → IF(true, nil, y1, append(y1, cons(min(nil), nil)))
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
SORTITER(nil, y1) → IF(true, nil, y1, append(y1, cons(min(nil), nil)))
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
The TRS R consists of the following rules:
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
empty(nil)
empty(cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
The TRS R consists of the following rules:
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
SORTITER(cons(x0, x1), y1) → IF(false, cons(x0, x1), y1, append(y1, cons(min(cons(x0, x1)), nil)))
The remaining pairs can at least be oriented weakly.
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( eq(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( le(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( append(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( if_replace(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( if_min(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( replace(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( SORTITER(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( IF(x1, ..., x4) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
tail(cons(n, x)) → x
replace(n, m, nil) → nil
tail(nil) → nil
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
The TRS R consists of the following rules:
min(cons(x, nil)) → x
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.